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ABSTRACT
After a brief review of major factors that influence results of genetic 
studies, we summarize key considerations in designing genetic studies 
of psychiatric disorders. A sufficient sample size is needed, along with 
an appropriate threshold for statistical significance. Rigorous quality 
assessment, controls of covariates and population structure, and 
replication of results in a second data set are critical to avoid spurious 
findings. Data sharing should be promoted to enable powerful big 
data analyses. Gradually, functional studies will be incorporated into 
genetic studies to improve the quality of genetic studies and biological 
interpretation of statistical associations. 

INTRODUCTION
Incorporating a genetic component can be appealing to an investigator 
designing a new study of a neuropsychiatric disorder.  After all, it is 
well known that most neuropsychiatric disorders are heritable to one 
degree or another.  Incorporating a genetic component into a study 
may seem straightforward : draw blood from subjects, submit it to a 
service lab, get the genotypes back, and test them for an association 
with the phenotype(s) being studied. In reality, it is considerably more 
complicated than that. Putting aside the complexity of choosing the 
proper platforms for genotyping and phenotyping, there are a number 
of issues that must be addressed in the initial study design if the results 
are to be replicable and relevant to the current state of knowledge of 
the disorder in question.  The three major issues are effect sizes, Type 
I error rates, and genetic and phenotypic heterogeneity.

The effect size of a particular gene variant can come as a bit of 
surprise to researchers unfamiliar with genetics of complex traits or 
common disorders. It is a major feature that sets common disorders 
apart from rare, Mendelian disorders. For a disease with prevalence of 
roughly 1%, a measure of effect size is the ratio of variant frequency in 
patients to that in controls. The single gene variants for rare diseases 
such as Huntington’s disease typically have effect sizes greater than 
1000, but almost all discovered common variant associations for 
psychiatric disorders have effect sizes between 1.1 and 1.4 [1].    Since 
sample size and effect size are the primary determinants of statistical 
power, genome-wide association study (GWAS) of complex disorders, 
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including neuropsychiatric disorders, require many thousands of samples in a case-control study to produce 
any genome-wide significant associations.

Here, “genome-wide significant associations” indicates that the association p-value has been corrected for 
multiple testing, a correction which controls for Type I error.   When performing as many tests as are required 
for a genome-wide association test, the multiple testing burden becomes a major problem.  For example, 
testing 10,000 loci for association with a phenotype, using the standard p-value cutoff of 0.05, will produce 
500 false positives, or Type I errors, without some type of statistical correction.  Type I error has been the 
primary concern in small sample studies with low allele frequency variants, which tend to give spurious 
associations.

Heterogeneity refers to diversity among samples.  In neuropsychiatric studies, diversity among the 
disorder-associated traits present in the case subjects is a particular concern[2]. Clinicians well understand 
that a single psychiatric diagnosis can cover a broad range of cognitive function or mood changes; problems 
with psychiatric nosology have been discussed for over a hundred years[3]. This phenotypic heterogeneity 
among cases is likely one of the reasons that the results of psychiatric case-control studies are often 
inconclusive or hard to replicate. Efforts are being made to bring clinical diagnostic categories into line with 
the underlying biology, via new phenotyping constructs such as those in the NIMH’s Research Domain 
Criteria (RDoC)[4]. Any screening that can reduce sample heterogeneity would lead to better power in 
detecting genetic factors[5]. There has been little success so far, however, so the problem of phenotypic 
heterogeneity, either within diagnostic categories or across traits like behavior or imaging, must be kept in 
mind when designing neuropsychiatric association studies.

Case samples can also be, and probably are, genetically heterogeneous, meaning that what appears to 
be a single phenotype can actually be associated with any one of multiple genetic variants. For example, 
in psychiatry, we know that almost 30% of adults with the rare 22q11.2 deletion are diagnosed with 
schizophrenia[6].  However, the vast majority (99%) of schizophrenia patients do not have this deletion[7], so 
their disease must be attributable to other genetic and environmental factors (although there could also be 
common effects of genes within the fairly large 22q11.2 deletion).  Schizophrenia is therefore a genetically 
heterogeneous disorder. Different mutations of different genes can lead to similar clinical phenotypes and 
diagnoses. Meanwhile, the same mutation could present different clinical features in different individuals likely 
due to genetic background differences, which brings us back to the problem of phenotypic heterogeneity. 

Genetic heterogeneity can also refer to population stratification, which is a problem in GWASs in general, 
not just for neuropsychiatric conditions[8].  Population stratification can produce spurious association results 
when there are allele frequencies between ethnic groups that are unrelated to disease, so a statistical 
correction must be incorporated into association study designs.

What follows is a checklist for taking the above issues into account when designing or performing a 
psychiatric genetic study. 

1.Make Sure You Have the Right Samples for the Kind of Study You Want to Perform.  There are many 
choices in designing genetic studies, from family-based to case-control, from genome-wide to candidate 
gene, and from linkage to association. Selection of methods depends on the specific hypothesis being tested. 
Detection of rare de novo mutations requires nuclear families. Association tests of common variants work 
better with large case-control cohorts. Private large effect mutations may be detected through large familial 
samples.  Each type of study requires a particular statistical method, each of which comes with its own null 
hypothesis and basic assumptions. 

2.Perform a Power Analysis. The number of subjects recruited into the study should be based on the 
expected effect sizes for the corresponding genetic variants and phenotypes in the study (as explained 
above, they will probably be quite small). One should be prepared to have 80% power to detect the effect at 
a given Type I error rate, taking the multiple testing correction into account. It should be noted that rare copy 
number variants and functional de novo mutations are predicted to have larger effect sizes[9]; therefore, 
studies with smaller sample sizes can be useful, as well.  Strong effect rare events can be detected with 
smaller sample sizes than are needed for GWAS using algorithms to collapse the different events into 
summary statistics, like gene-wide or region-wide tests[10]. 

3.Select the Appropriate Threshold of Significance.  Because of the multiple testing burden, GWASs 
typically use a p-value of 2e-8 or 5e-8 as a threshold for genome-wide significance. If a study focuses on 
some candidate variants or genes, the number of linkage equilibrium (LD) independent tests could be used 
to adjust that threshold. False discovery rate (FDR)[11], Bonferroni correction, or permutation are a few 
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commonly used methods for correcting multiple testing inflation of Type I error rates.

4.Perform Rigorous Quality Control (QC) Measures.  Insufficient quality control can lead to both false 
positives and false negatives. Both sample and measurement quality should be carefully assessed.  Different 
experimental platforms have their own specific quality evaluation procedures; for example, a microarray-
based genotyping should be evaluated for call rates for each sample and each SNP. Proper filtering should 
be applied to remove low-quality data before association tests are performed. Read-depth and sequence 
quality should be assessed for sequencing-based genotype data. The Hardy-Weinberg equilibrium test is 
frequently used to identify some potential genotyping errors. Because of the potential for sample handling 
errors, identity checks and sex checks are also frequently used to capture errors.   

5.Control for the Effects of Co-variates.  When the effects of co-variates are not controlled for statistically, 
they can skew the association results to produce false positives or false negatives. Many biological or 
environmental factors can be confounded with case-control status, such as sex, age, and drug exposure.  
There are also many technical artifacts that can interfere with results, such as experimental batch effects; 
these are the differences that arise between experimental batches due to anything from different reagent 
lots to different technicians running the experiments to variation in atmospheric pressure on the days the 
experiments were run[12].  There are programs designed to statistically remove these effects from data, such 
as COMBAT[13], which removes batch effects from gene expression microarray data. These programs are 
not a cure-all, so a careful plan for randomized placement of samples in experiments is still required. 

6.Account for Population Stratification in Case-control Studies. Ensuring that the case and control 
groups have comparable population composition is necessary to avoid false positives. Software like 
STRUCTURE[14] or methods like principal component analysis (PCA) are frequently used to address the 
problem using unlinked or ancestry informative markers (AIMs) that represent different geographical origins.  
These methods for controlling population stratification are better used when the stratification is mild.  When 
samples come from very different populations, like from different continental groups, it may be better to study 
the different population samples separately, followed by a combined statistical analysis. 

7.Include Validations, i.e., Replication of Results, in Study Design and Budget.  Validation of any 
positive results is essential. It is not enough to observe a significant result in only one data set. Ideally, an 
appropriate second data set will be available with which to re-run the analysis and confirm the findings. 
The significance level of the initial findings can be an indicator of the probability that the results will be 
reproduced.  However, the results may not be reproduced in a second data set, due to either false positives 
in the initial study or sample heterogeneity problems. Note that the significance threshold for replication 
can be much lower than in the initial discovery, which is typically genome-wide, because only the loci with 
significant associations in the initial data will be tested in the replicate data. 

8.Share Data.  Since sample size and data quality is critical for the success of genetic studies, data 
sharing is becoming the trend in the research community, due in part to support from funding agencies and 
publishers. The NIH now mandates data sharing for large grants with genetics and genomics data. The 
Psychiatric Genomics Consortium (PGC, http://www.med.unc.edu/pgc/) and Enhancing Neuro Imaging 
Genetics Through Meta Analysis (ENIGMA, http://enigma.ini.usc.edu/) have set good examples. 

9.Remember that Proof of Biological Function is Needed to Substantiate Genetic Statistical 
Associations.  Much, though not all, of the low-hanging fruit in genetic association studies have already 
been plucked.  The field has moved past looking for simple Mendelian factors, and towards identifying 
functional aspects of the molecular changes underlying challenging complex disorders. Today, pathway 
analysis, network analysis[15, 16] and in silico prediction of functional variation produced by coding variants 
are common practice. Functional analysis of non-coding variants is a major challenge facing the field[17]. 
Expression quantitative trait loci (eQTL) mapping is one way to address the issue, since it identifies variants 
with potential roles in regulating gene expression[18].  Association with other phenotypes like brain imaging 
traits is another way of investigating possible functional effects of genetic variants[19, 20]. As more genomic 
and epigenomic data accumulate and more effort is put into studies of non-coding variants, particularly for 
human brains[21], we should acquire more and more evidence as to the functional effects of the genetic 
variants identified by genetic association studies. Converting statistical associations into biological causalities 
will be the major task after genetic studies. 

To summarize, investigators must be aware that heterogeneity is a particular problem in genetic studies 
of neuropsychiatric diseases: what is referred to as a single diagnosis can actually represent a range of 
phenotypic traits, while on the flip side a single phenotypic trait can be produced by multiple alleles.   Study 
design must include sufficient power to detect very small effect sizes, proper quality and covariate control 
procedures, a validation step, and a significance threshold that will control for Type I error. Ideally, studies 
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will produce functional evidence to support identified statistical associations between genetic variants and 
phenotypes. Data sharing should be promoted as a common practice of genetic studies. 
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