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ABSTRACT 

Microbial transglutaminase (mTG) is a survival factor for bacteria that is 
heavily used as a protein glue in the processed food industries. Despite the 
manufacturers’ claims for it safe usage, scientific observations are 
accumulating for its unwanted effects on human health. The enzyme can 
cross link proteins, imitating its family member, tissue transglutaminase, 
the autoantigen of celiac disease. Its gliadin cross-linked complexes are 
immunogenic in celiac disease. In the intestinal lumen, mTG exerts anti 
protease activity and forms resistant isopeptide bonds, it is anti-phagocytic, 
thus suppressing luminal protective pathways. It increases intestinal 
permeability, is trans-epithelialy transported and faces the enteric mucosal 
immune cells. Finally, mTG-containing products can react as emulsifiers 
and mucolytic agents thus compromising barriers’ integrities. The present 
review summarizes and updates on the potential detrimental effects of 
mTG, aiming to protect the public from the enzyme’s unwanted effects. 
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INTRODUCTION 

Transglutaminases (TGs) (EC 2.3.2.13), i.e., protein-glutamine 
γ-glutamyltransferase, are multi-functional, pleiotropic enzymes, 
expressed ubiquitously and extensively in living organisms. They are 
active in all mammalian tissues, in invertebrates, plants, yeasts and 
bacterial cells. Presently, nine members of the TG family have been 
characterized in human tissues, playing a crucial role in physiological 
homeostasis, as well as in pathological disorders [1]. All TGs, catalyze the 
formation of an isopeptide bond, cross-linking an amine group (acyl 
acceptor) and the acyl group (acyl donor). They are an example of 
enzyme’s induced posttranslational modification of proteins/peptides, 
involving a plethora of common chronic human diseases [2,3]. 
Deamidation or cross-linking of proteins are the main mechanisms 
through which they exert their biological functions. The human tissue 
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tranglutaminase (tTG) is celebrating its diamond anniversary, since its 
discovery 60 years ago. It evolved from a pedestrian protein to a talented 
promising therapeutic target [4,5]. 

The present review will concentrate on the prokaryotic TGs, the 
microbial TG (mTG), highlighting its massive uses in the processed food 
industries, as a food additive. It appears that mTG, a bacterial survival 
factor, is beneficial for the food industry, but, its public safety is under 
investigation where various potential detrimental effects were recently 
described or suggested. 

Characteristics of Microbial Transglutaminase 

Prokaryotic mTG is a member of the extended TG family, exerting 
deamidation and cross-linking of multiple substrates [6]. Its versatility 
spans a wide bacterial kingdom, was firstly isolated and characterized in 
Streptomyces mobaraense [2,3,7–9]. It is 331 amino acids long with a 
molecular weight of 37.9 kDa. Since its first characterization, a plethora 
of additional microbes were described to secrete mTG, with variable 
enzymatic yield capacities [3]. The most frequently used industrial mTG 
is secreted from Streptoverticillium mobaraense [3]. Novel mTGs are 
continuously described using ultrahigh-throughput screening and other 
biotechnological systems [10]. A recent new one, for example that exerts 
anti-phagocytic activity was reported in Streptococcus suis [11]. 

mTG and tTG are Structurally Different but Functionally Similar 

Inversely to the human tTG, considered as the autoantigen in celiac 
disease (CD) [12], mTG is not dependent on calcium for activation nor on 
nucleotides for deactivation. Instead of four domains, it has only a single 
structural domain and a lower molecular weight than the tTG. It exhibits 
less substrate specificity and operates in a wider pH range [6,13]. Bonds 
created by the mTG are relatively resistant to proteases degradation, the 
enzyme operates at a higher reaction rate, delivering a higher 
transamidation/deamidation ratio due to its improved cross-linking 
capacity. Notably, tTG is endogenous, while mTG is exogenous, a common 
enzyme of the prokaryotic kingdom, considered as an environmental 
factor that potentially can affect human health, as detailed below. 
Considering its protein modifying abilities, exerting deamidation and 
transamidation, it imitates functionally the endogenous tTG [2,3,6,13]. 
Based on its fundamental features and its wider enzymatic activity, it 
represent a prime candidate, extensively used by multiple and constantly 
developing industries. The tissue engineering, textile, leather, biomedical 
diagnostic, labeling, biotechnological, pharmaceutical, food processing 
and nutraceutical industries [6,8,14–22]. 
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Applications of Microbial Transglutaminase in the Food Processing 
Industries 

The industrial applications of mTG is constantly expanding and 
diverging. Since the present review zooms on human health and mTG 
ingestion, from now on it will focus on the food processing industries. 

The surge in eight food additives, increasingly used by the processed 
food industries, mTG included, was summarized recently [14]. It appears 
that the net percent increase per year of total enzyme usage in the 
processed food industries is estimated to be 21.9%, mTG being a major 
one [14]. It is estimated that for each kilogram of food material, the 
processed food industry is using 50–100 mg of the mTG enzyme, ending 
up in a 15 mg daily intake [15,18,23]. 

The frequently used nickname of mTG is “protein glue” but 
scientifically, it is a clear posttranslational modifier of proteins. This 
results in a three-dimensional structural change consequently creating 
new epitopes on the complexes’ surface [2,3,6,13]. In fact, the enzyme is 
consumed by most of the processed food industries, including bakeries, 
dairy, meat, surimi, sea food and fish, salad, casein and gelatin, myosin 
and actin, confection, convenience and many more industrial food 
applications [6,8,14–21,24–26]. The industrial manufacturers’ benefits, 
using mTG were reported extensively. In brief, the mTG enzymatic action 
affects viscosity, gelation, foaming, thermal stability, elasticity, 
water-holding capacity, binding ability, emulsification, consistency, 
texture, resilience and above all, elongate the life time in the groceries, 
public markets and supermarkets shelves and improve palatability 
[6,13,15]. The enzyme is considered as an industrial processing aid, thus, 
escaping the regulation of a food additive. 

Celiac Disease and Tissue Transglutaminase 

Celiac disease (CD) is a gluten dependent autoimmune disease elicited 
in genetically predisposed individuals by the consumption of prolamine 
grains (i.e., wheat, barley, rye and oat) or ingredients of them. It affects  
1–1.5% of Western populations and improves on gluten free diet. 
Pathophysiologically, gluten is partially digested in the enteric lumen, 
resulting in partial degradation till proteolytic-resistant peptides are 
formed. After trans-epithelial transport, gliadin peptides are deamidated/ 
transamidated by the sub-epithelial tTG, leading to the formation of 
deamidated gliadin peptides, have a stronger binding capacity to MHC II, 
thus, stimulating the T and B cells to damage the epithelium, induce 
inflammation and secrete CD associated autoantibodies [27]. It should be 
emphasized that often forgotten is that transamidation occurs at a higher 
rate (75%) than deamidation (25%) in the tTG-gliadin cross talks [28]. 
After transamidation, tTG is covalently linked to gliadin peptides to 
create neo-epitopes complexes [29]. Interestingly, these neo-epitopes 
were described in vivo in small intestine biopsies of CD patients where a 
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pathogenic role was attributed to them [30–32]. Formation of tTG-neo 
epitopes and presentation to the immune system, would support the 
hypothesis of epitope spreading and the ensuing development of 
autoantibodies against tTG and against the neo-epitope tTG cross linked 
complex [13,30,33]. In summary, tTG is a key player in CD initiation and 
progression by modifying naive gliadins to immunogenic molecules and 
complexes, thus losing the tolerance to gluten/gliadin containing 
nutrients. The transamidation capacities of the tTG is imitated by the 
exogenous mTG. 

MICROBIAL TRANSGLUTAMINASE—GLIADIN CROSS-LINKED 
COMPLEXES ARE IMMUNOGENIC IN CELIAC DISEASE 

Several potential aspects associate mTG to celiac disease. At present, it 
should be stressed that we are dealing with an associative correlation 
and no causality was yet determined. Epidemiologically, the annual 
increased consumption of the enzyme goes parallel with the increased 
incidence of autoimmune conditions and CD, in the last decades 
[14,34,35]. Pathophysiologically, mTG imitates functionally the tTG, both 
posttranslation modifiers of gluten/gliadin peptides, by deamidation and 
transamidation [6]. Chemically, gluten and gliadin peptides are ideal 
substrates for the two enzymes due to their rich glutamine and lower 
lysine contents. Sequence-wise, no sequence homology but active site 
similarity were detected upon alignment of the two TGs [13]. 

Those associations were at the basis to explore the immunogenicity of 
the mTG and its gliadin-docked complexes, in CD patients. When the 
serological titers of mTG, tTG, gliadin complexed mTG (mTG neo-epitope) 
and gliadin complexed tTG (tTG neo-epitope) were studied in 95 pediatric 
celiac patients, compared to 99 normal children, 79 normal adults and 
45 children with nonspecific abdominal pain, the following results were 
obtained: (1) mTG-neo IgA, IgG and IgA combined with IgG antibody titers 
exceed significantly the comparable mTG ones. The anti mTG positive 
patients were negligible and with a very low activity. (2) All levels of  
mTG-neo and tTG-neo isotypes were significantly higher in CD patients 
compared to controls. (3) Comparing all studied antibodies, tTG-neo 
IgA+IgG, tTG-neo IgA and mTG-neo IgG correlated best with patient’s 
intestinal pathology (r2 = 0.6454, r2 = 0.6165, r2 = 0.5633; p < 0.0001,  
p < 0.0001, p < 0.0001, respectively). (4) mTG-neo IgG+IgA showed an 
increased immunoreactivity compared to single mTG and gliadin  
(p < 0.001) but similar immunoreactivity to the tTG-neo IgG and IgA ELISA. 
(5) Using competition ELISA, the mTG neo-epitopes and tTG neo-epitopes 
antibodies had identical outcomes when checked on CD sera, both 
showing a decrease in optical density of 55 ± 6% (p < 0.0002). The author’s 
summary was: “mTG is immunogenic in children with CD and, by 
complexing to gliadin, its immunogenicity is enhanced” [13]. 

Comparing 17 CD associated serological biomarkers, mTG-neo IgG 
correlated closely to the mucosal injury and was summarized as a new 
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reliable serological biomarker for CD diagnosis and enteric damage 
reflection [27]. Finally, when a Swedish pediatric CD population was 
studied for CD relayed antibodies, mTG-neo IgG had a good area under 
curve on ROC analysis (0.877) and an acceptable sensitivity (0.88%) and 
specificity (90%) for CD diagnosis [36]. 

PATHOGENIC ASPECTS OF MICROBIAL TRANSGLUTAMINASE 

The potential pathogenic proofs for the environmental mTG 
involvement in chronic human disease induction are still being explored, 
but some of them were already published. Figure 1 summarizes 
schematically the various pathogenic pathways of mTG, representing 
potential mechanisms for mTG pathogenicity. 

 

Figure 1. mTG activities representing potential mechanisms for mTG pathogenicity in human. 

mTG can Potentially Enhance Intestinal Permeability 

mTG is a survival factor that protects bugs against us, thus, enhancing 
the survival of dysbiotic or pathogenic bacteria in the gut lumen [2,3]. 
Microbial infections are a well-described etiology for compromising tight 
junction integrity and increasing intestinal permeability [37]. Gluten 
ingestion and gliadin peptides induce increased intestinal permeability, 
not only in CD patients [38]. Being a gluten-based peptide, mTG 
cross-linked gliadin can duplicate the effect on the tight junction. 
Additionally, actin, e-cadherin and adherens junctions are integral part 
of the enteric, inter-epithelial permeability machinery. They can be 
modified by TGs, including mTG that imitate functionally TGs, thus 
perturbing their protective ability [6,14,39]. mTG has emulsifying 
properties by cross-linking different proteins. Emulsifiers, heavily used in 
the process food industries, are enhancers of gut permeability [14,40]. 
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The same reasoning apply to the mTG capacity to lipidate proteins, thus 
augmenting their emulsifying ability [41]. Much more, proteins originate 
from nutrients like casein, pork myofibrils, peanut and fish, cross-linked 
by mTG acquired emulsifying properties [39,42]. The same holds true for 
hydrolyzed gluten, known to increase emulsification [43]. Other food 
additive, heavily consumed by food industries, the nanoparticles, can be 
cross linked by mTG to improve their luminal delivery systems [44,45]. 
Nanoparticles also are disruptors of tight junction integrity [14]. 

Finally, Glutamine and sulfur-containing amino acids (cystine, cysteine 
and methionine) regulate the intestinal originated cell line (Caco-2) tight 
junction proteins. mTGs cross-linking those glutamine/sulfur containing 
amino acid peptides can induce a deprivation state of those amino acids, 
thus declining intestinal permeability regulation [46,47]. 

mTG Effects on Epithelial Gliadin Uptake and Transportation 

tTG facilitates apical-basal passage of gliadins, a process helped by apical 
transferrin receptors and secretory IgA [48]. Imitating tTG functions, mTG 
potentially can facilitate this epithelial gliadin uptake pathway, thus 
enhancing CD [6]. Very recently, Stricker P. et al., shed a new aspect of mTG 
pathogenic potential [32]. They followed tagged mTG and gliadin, applied to 
CD intestinal biopsies and RACE cells (rapid uptake of antigen into the 
cytosol of enterocytes), ex vivo and in vitro, respectively. mTG and gliadin 
were transported to the enterocytes’ and to the of RACE cells’ endoplasmic 
reticulum. Furthermore, mTG strongly localized at the basolateral 
membrane and the enteric lamina propria. Those interesting observations 
suggest cross presentation of exogenous antigens, like mTG and gliadins, in 
CD patients and more importantly, indicating a potential antigenic 
interaction with cells of the immune system. The cited basic science study 
support our clinical studies of mTG-gliadin neo-epitope complexes, being 
immunogenic in CD patients [13,27]. Actually, the mechanism of those 
antibodies production is clearer, since foreign antigens like mTG and 
gliadin peptides, find their way from the intestinal lumen and after 
trans-enterocyte transport, deposited and exposed to the immune 
sub-epithelial system. 

mTG Suppresses Intestinal Luminal Protective Barriers 

Being exposed to the environment, the intestinal compartment 
evolved multiple protective mechanisms. Some of them can be disrupted 
by mTG, thus giving the bugs a survival advantage on us, in the enteric 
extremely hostile compartment. 

A novel mTG was lately described in Streptococcus suis that represent 
a virulent factor that suppresses phagocytic activities, thus suppressing a 
crucial component of human immunity [49–51]. Not less significant is the 
mucus layer. Recently tTG was found to stabilize, by cross-linking 
glutamine rich compounds, the MUC2 Mucin intra cellular isopeptide 
bonds, before being secreted extracellularly [52]. Since the human gut 



 
Med One 7 of 13 

Med One. 2019;4:e190001. https://doi.org/10.20900/mo.20190001 

lumen is rich in mTG activity, and the mucus is rich in acyl donors and 
acceptors, it is foreseeable that mTG can alter mucus stability, enabling 
pathogenic microbes to approach their attached receptors. Finally, the 
isopeptide bonds formed by mTG are extremely resistant to any human 
luminal enzyme, escaping the enzymatic degradation, reducing agents 
and multiple detergents. Even immunoglobulins, bile acids or 
antimicrobial molecules cannot break down those bonds [3,53,54]. In 
summary, luminal mTG has the capacity to counteract highly conserved 
evolutionary protective intestinal mechanisms. 

Additional Observations Related to Potential mTG Pathogenicity in CD 

One of the main important aspect is the availability of mTG in 
commercial food products. When 60 meat and meat products on the 
supermarket shelves were double-checked by different sensitive 
analytical methods, many of them contained mTG [55]. Although only 
associative, epidemiological survey showed a correlation between the 
increased CD incidence and the continuous surge in consumption of 
enzymes in the bakery industries, mTG being a major one [6,14]. Finally, 
wheat or gluten containing products enzymatically treated by mTG were 
shown to be immunogenic, inducing antibodies when consumed by 
humans [56–65], thus substantiating the serological studies on mTG 
immunogenicity [13,27]. 

THE POTENTIAL INTESTINAL SOURCES OF MTG LOAD 

In order to exert its immunogenic and pathogenic activities (Figure 1), 
mTG needs to enter the human gut lumen. A portion of mTG is 
environmentally generated, some of it is introduced in the form of food 
additives and the rest is produced by the luminal prokaryotes [2,3]. 
Table 1 summarizes the extra and intra intestinal sources of mTGs. Taken 
together, a plethora of extra intestinal and enteric luminal sources of 
mTGs, capable to cross-link numerous substrates, including the 
glutamine rich gliadins, exist. The final result is that the mTG mobilomic 
cargo can postrtanslate and modify proteins, rendering naive to 
non-tolerated ones, potentially driving autoimmunity [2,3,6,32]. 

Table 1. The extra and intra-intestinal sources of mTG. 

 mTG Source References 
Extra-intestinal Processed food additive [2,3,6,8,13–17,24] 
 Pathobionts [2,3,14,50,66–68] 
 Probiotics [67,69–71] 
 Plants [65,72] 
 Vegetables [65,72] 
Intra-intestinal Microbiome [2,3,6,13–17] 
 Dysbiome [2,3,6] 
 Yeasts [73–76] 
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SUMMARY 

mTGs are considered, at least by producers, to be safe, non-toxic, 
non-allergenic, non-immunogenic and non-pathogenic for public health 
[6]. The present review summarizes the epidemiological, scientific and 
clinical proofs for this food additive and bacterial survival factor’s 
immunogenic and pathogenic potentials. Actually, there is enough 
background knowledge to address mTGs’ safety in a multi-disciplinary 
approach, aiming to protect the public against its potential detrimental 
effects. If substantiated, the findings will affect food product labeling, 
processed food additive policies, regulatory authorities’ product control, 
consumer health education and public health safety. A.L. designed and 
wrote the manuscript, T.M. overviewed, searched and analyzed the 
literature and edited the manuscript. 
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